Large Deviations without Principle
نویسندگان
چکیده
We develop a methodology for studying “large deviations type” questions. Our approach does not require that the large deviations principle holds, and is thus applicable to a larg class of systems. We study a system of queues with exponential servers, which share an arrival stream. Arrivals are routed to the (weighted) shortest queue. It is not known whether the large deviations principle holds for this system. Using the tools developed here we derive large deviations type estimates for the most likely behavior, the most likely path to overflow and the probability of overflow. The analysis applies to any finite number of queues. We show via a counterexample that this sytem may exhibit unexpected behavior.
منابع مشابه
Large deviations without principle: join the shortest queue
We develop a methodology for studying “large deviations type” questions. Our approach does not require that the large deviations principle holds, and is thus applicable to a large class of systems. We study a system of queues with exponential servers, which share an arrival stream. Arrivals are routed to the (weighted) shortest queue. It is not known whether the large deviations principle holds...
متن کاملLarge deviations principle for the largest eigenvalue of Wigner matrices without Gaussian tails
We prove a large deviation principle for the largest eigenvalue of Wigner matrices without Gaussian tails, namely such that the distribution tails P(|X1,1| > t) and P(|X1,2| > t) behave like e−bt α and e−atα respectively for some a, b ∈ (0,+∞) and α ∈ (0, 2). The large deviation principle is of speed Nα/2 and with an explicit good rate function depending only on the tail distribution of the ent...
متن کاملLarge Deviations Principle for Perturbed Conservation Laws
We investigate large deviations for a family of conservative stochastic PDEs (conservation laws) in the asymptotic of jointly vanishing noise and viscosity. We obtain a first large deviations principle in a space of Young measures. The associated rate functional vanishes on a wide set, the so-called set of measure-valued solutions to the limiting conservation law. We therefore investigate a sec...
متن کاملLarge Deviations Principle for Stochastic Conservation Laws
Abstract. We investigate large deviations for a family of conservative stochastic PDEs (viscous conservation laws) in the asymptotic of jointly vanishing noise and viscosity. We obtain a first large deviations principle in a space of Young measures. The associated rate functional vanishes on a wide set, the so-called set of measure-valued solutions to the limiting conservation law. We therefore...
متن کاملSample Path Large Deviations for Heavy-Tailed Lévy Processes and Random Walks
Let X be a Lévy process with regularly varying Lévy measure ν. We obtain sample-path large deviations of scaled processes X̄n(t) , X(nt)/n and obtain a similar result for random walks. Our results yield detailed asymptotic estimates in scenarios where multiple big jumps in the increment are required to make a rare event happen. In addition, we investigate connections with the classical large-dev...
متن کامل